Chamber Structure For Double Hurwitz Numbers
نویسندگان
چکیده
Double Hurwitz numbers count covers of the sphere by genus g curves with assigned ramification profiles over 0 and ∞, and simple ramification over a fixed branch divisor. Goulden, Jackson and Vakil (2005) have shown double Hurwitz numbers are piecewise polynomial in the orders of ramification, and Shadrin, Shapiro and Vainshtein (2008) have determined the chamber structure and wall crossing formulas for g = 0. We provide new proofs of these results, and extend them in several directions. Most importantly we prove wall crossing formulas for all genera. The main tool is the authors’ previous work expressing double Hurwitz number as a sum over labeled graphs. We identify the labels of the graphs with lattice points in the chambers of certain hyperplane arrangements, which give rise to piecewise polynomial functions. Our understanding of the wall crossing for these functions builds on the work of Varchenko (1987). This approach to wall crossing appears novel, and may be of broader interest. This extended abstract is based on a new preprint by the authors. Résumé. Les nombres de Hurwitz doubles dénombrent les revêtements de la sphère par une surface de genre g avec ramifications prescrites en 0 et ∞, et dont les autres valeurs critiques sont non dégénérées et fixées. Goulden, Jackson et Vakil (2005) ont prouvé que les nombres de Hurwitz doubles sont polynomiaux par morceaux en l’ordre des ramifications prescrites, et Shadrin, Shapiro et Vainshtein (2008) ont déterminé la structure des chambres et ont établis des formules pour traverser les murs en genre 0. Nous proposons des nouvelles preuves de ces résultats, et les généralisons dans plusieurs directions. En particulier, nous prouvons des formules pour traverser les murs en tout genre. L’outil principal est le précédent travail des auteurs exprimant les nombres de Hurwitz doubles comme somme de graphes étiquetés. Nous identifions les étiquetages avec les points entiers à l’intérieur d’une chambre d’un arrangement d’hyperplans, qui sont connu pour donner une fonction polynomiale par morceauz. Notre étude des formules pour traverser les murs de cettes fonctions se base sur un travail antérieur de Varchenko (1987). Cette approche paraı̂t nouvelle, et peut être d’un large intérêt. Ce résumé élargi se base sur un papier nouveaux des auteurs.
منابع مشابه
On double Hurwitz numbers in genus 0
We study double Hurwitz numbers in genus zero counting the number of covers CP → CP with two branching points with a given branching behavior. By the recent result due to Goulden, Jackson and Vakil, these numbers are piecewise polynomials in the multiplicities of the preimages of the branching points. We describe the partition of the parameter space into polynomiality domains, called chambers, ...
متن کاملTowards the Geometry of Double Hurwitz Numbers
Double Hurwitz numbers count branched covers of CP with fixed branch points, with simple branching required over all but two points 0 and∞, and the branching over 0 and∞ points specified by partitions of the degree (withm and n parts respectively). Single Hurwitz numbers (or more usually, Hurwitz numbers) have a rich structure, explored by many authors in fields as diverse as algebraic geometry...
متن کاملPruned Double Hurwitz Numbers
Hurwitz numbers count ramified genus g, degree d coverings of the projective line with fixed branch locus and fixed ramification data. Double Hurwitz numbers count such covers, where we fix two special profiles over 0 and ∞ and only simple ramification else. These objects feature interesting structural behaviour and connections to geometry. In this paper, we introduce the notion of pruned doubl...
متن کاملToda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers
This article introduces mixed double Hurwitz numbers, which interpolate combinatorially between the classical double Hurwitz numbers studied by Okounkov and the monotone double Hurwitz numbers introduced recently by Goulden, Guay-Paquet and Novak. Generalizing a result of Okounkov, we prove that a certain generating series for the mixed double Hurwitz numbers solves the 2-Toda hierarchy of part...
متن کاملMonotone Hurwitz numbers and the HCIZ Integral
We prove that the free energy of the Harish-Chandra-Itzykson-Zuber matrix model admits an N → ∞ asymptotic expansion in powers of N −2 whose coefficients are generating functions for a desymmetrized version of the double Hurwitz numbers, which we call monotone double Hurwitz numbers. Thus, the HCIZ free energy expands as a generating function enumerating certain branched covers of the Riemann s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010